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Polymer Hugoniots Display Structure
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• Derivative discontinuities at
up∼3 km/s (typically P ∼ 25
GPa)
– Middle line segment not at

equilibrium

• Volume collapse in P -V
– Degree of collapse correlates

qualitatively with chemical
structure

LA-13006-MS, LANL (originally prepared in 1977)
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Hugoniot Structure: Two Early Views
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• Phase transition (LANL, 1977)
– analogous to graphite→diamond
– “compression...is two-dimensional in nature” below the transition, “more

typical of a three-dimensional solid” above

• Decomposition (LLNL, 1979)
– “..hydrocarbons at high pressure (&10 GPa) and high temperature

(&1000 K) dissociate into carbon in the diamond phase and hydrogen
in a condensed molecular phase”
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Hugoniot Structure: Recovery Experiments
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• Experiments on polyethylene and
Teflon

• Setup
– Single-shock, Mach compression
– Hermetically-sealed capsule

• Enabled recovery of soot and gases
• Mass spectrometry, XRD, TEM

• Polyethylene results
– Polymer recovered at ∼20 GPa
– Gases and soot recovered 28-40 GPa

• Gases were >80% mol CH4 and H2

• Soot was neither graphite nor diamond

PE: SCCM-1989, p. 687; PTFE: J. Chem. Phys. 80, 5203 (1984)
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Unreactive EOS: SESAME Framework
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• Purely volumetric, no strength or viscoelasticity
• 3-part decomposition for free energy of each phase

F (ρ, T ) = φ(ρ) + Fion(ρ, T ) + Felec(ρ, T )

• Minimize F as function of mass fractions→ equilibrium phase
boundaries

• With regard to polymers:

– Electronic part not that important for ρ/ρ0 . 3
– Ionic models are variations on Debye
– Cold curve extracted from fit to shock data

• This produces artifacts if data above cusp included
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Thermochemical Modeling
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• Decomposition products as mixture of fluids and bulk solids
– Each constituent has its own free energy model

• Fluids: spherical, pairwise interaction potential translated to free
energy with perturbation theory

• Solids: SESAME model

– Mixture rule required (non-unique)
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• Decomposition products as mixture of fluids and bulk solids
– Each constituent has its own free energy model

• Fluids: spherical, pairwise interaction potential translated to free
energy with perturbation theory

• Solids: SESAME model

– Mixture rule required (non-unique)
• Assume full thermodynamic (and thus, chemical) equilibrium

– Adjust concentrations until minimal free energy found and
stoichiometry preserved

• Reaction energy (E0) tuned to
fit shock data

See talks by Leiding, Ticknor
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PMDI Polyurethane: Approach
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30% 50% 60% 75%

• Shock data for polyurethane at 0-75% porosity
• Thermochemical modeling above some threshold

– Threshold varies with porosity, unknown a priori
– Carbon as diamond for full density, as graphite for foams
– Only adjustable parameter is E0

• Reactants were SESAME + P − α porosity model
– Only porous parameter is crush pressure, Pc

Dattelbaum & Coe, et al., J. Appl. Phys. 115, 174908 (2014)
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PMDI Polyurethane: Full Density Results
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• E0 of products adjusted to match data above transition
• Reactant EOS calibrated to all solid data

Dattelbaum & Coe, et al., J. Appl. Phys. 115, 174908 (2014)
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PMDI Polyurethane: Foamed Results
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• Porous E0 same as for solid
– Good agreement with highest

points
• Set Pc=16 kbar
• Products locus to right of

reactants

30% porous
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Dattelbaum & Coe, et al., J. Chem. Phys. 115, 174908 (2014)
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• Porous E0 same as for solid
– Good agreement with highest

points
• Set Pc=16 kbar
• Products locus to right of

reactants
• Approach makes qualitative

sense of the pattern
• Uncertainties are an issue

75% porous
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Transition “Thresholds”
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• Roughly exponential drop
• Strong dependence on timescale of experiment
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Temperature Usually Increases
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• In most cases we find T > 0 upon decomposition
• Foam temperatures very high due to P − V work
• High T observable in “bleached” PDV signal

Dattelbaum and Coe, Polymers (2019)
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Product Compositions
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• Products dominated by solid carbon and water
• Not much variation over range of gun data or with porosity
• Hard to validate these (see Leiding and Lindsey talks, Jadrich poster)

Dattelbaum and Coe, Polymers (2019)
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The Hydrodynamic Connection
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• “Chemistry” to the Euler equations:

∆E and ∆V , smeared out over some ∆t

– ∆E can be incorporated through EOS or source term
– ∆V always incorporated through EOS

• The signs of the ∆’s determine the character of the waveforms
– The sign of ∆V is important

• Simulating reactive wave profiles involves 3 ingredients:
– EOS
– rate model/closure rule
– integration of the conservation equations
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Reactive Wave Profiles: Energetic Materials
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• ZND: inert shock followed by reaction zone to CJ state
• Reaction behind feeds the front, strengthening lead shock
• Reaction pushes unsteady→ steady

Menikoff, LA-UR-15-29498; Gustavsen, et al., J. Appl. Phys. 2006
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Reactive Wave Profiles: Non-Energetic
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• Reaction behind weakens lead shock
• Waves separate rather than converge
• Initial (P1) wave decays, second (P2) wave carries to products
• Decay and rise times contain kinetic information

Dremin, Combust. Explos. Shock Waves (1965); Dattelbaum AIP Conf. Proc. (2018)
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Reactive Wave Profiles: Organic Liquids
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Embedded gauge data for liquid phenylacetylene

Dattelbaum & Sheffield, AIP Conf. Proc. 1426, 627 (2012)
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Reactive Wave Profiles: Polymers
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VISAR at (reshock)
interface with window

Transmission data for fiber-filled composites

• First observation of multiwave structure in reacting polymer

Dattelbaum & Coe, et al., J. Appl. Phys. 116, 194308 (2014)
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Reactive Wave Profiles: Polymers
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PDV at (reshock)
interface with window

increasing sample thickness→

• Increased P1-P2 lag =⇒ wave separation with time
• Dotted lines are simulation with Arrhenius model

R. Huber, et al., submitted to J. Appl. Phys.
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“Reactive” Wave Profiles: Metals
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VISAR at (reshock)
interface with window

α→ ω phase transition in Zr

Rigg, et al., J. Appl. Phys. (2009)
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Reactive Wave Profiles: Foams
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PDV in polyurethane foams

• Clockwise from upper left: 30%, 50%, 60%, 75% porous
• One wave observed
• PDV increasingly “washed out” due to high T
Dattelbaum & Coe, et al., J. Appl. Phys. 115, 174908 (2014)
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Summary

• Polymers decompose under shock loading
– up∼3 km/s, P∼25 GPa at full density

• Threshold conditions drop dramatically as porosity increases
– Products expand upon reaction

• Wave splitting a feature of density-increasing transitions
– Chemically more like HE, but wave profiles more like phase

transitions in metals, etc.
• Papers

– In progress: polysulfone, PMMA, polyimide
– Previous: polyethylene (JAP, 2019), overview (Polymers, 2019),

polyurethane (JAP, 2014), fiber-filled composites (JAP, 2014), lots of
conference proceedings

Los Alamos National Laboratory UNCLASSIFIED October 28, 2019 | 21
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Extra Slides

Los Alamos National Laboratory UNCLASSIFIED October 28, 2019 | 23



UNCLASSIFIED

Artificial Multiwave Structure
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• Products EOS 97607
• Historical EOS 7603

– structure included in fit
– produces multiwave structure
– structure preserved in isentropes

• Reversibility?
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Heterogeneous Materials are Hard
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See Maerzke talk

• Not always clear what you’re probing
– Pore diameters span range O(10 µm−1 mm)
– Spot size of our standard PDV is roughly 450 µm

• US ≈ up, so σ(ρ) large
• Shot-to-shot variability > known sources of uncertainty
• We have the same problem with powders
Image courtesy of Brian Patterson (MST-7, LANL), data courtesy of John Lang (M-9, LANL)
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Detonation Criterion
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• In order to produce a self-sustaining wave, a material must have a positive
thermicity coefficient, σ:

σ =

(
∂P

∂λ

)
V,E

=
∆V

V
− Γ

c2
∆H

λ = reaction progress variable

Γ = Grüneisen parameter

c = frozen sound speed

∆H = enthalpy change

• Exothermicity (∆H < 0) isn’t sufficient (or even necessary!) for detonation

– ”The importance of the volume term has often been overlooked...”

Fickett and Davis, Detonation: Theory and Experiment
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Our Traditional Approach to Polymer EOS
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• Fit some shock data
• Assume some characteristic

temperature
– Cold curve by subtraction

• Potential problems:
– Structure present even at 0K
– Structure preserved to high T
– Completely reversible transition

• Thermals often poorly
constrained
– Important for foams
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Rate Model Calibration: Theory
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• Adiabatic induction time for constant-volume burn

tad(T0) =
T 2
0

νTa(T1 − T0)
e(Ta/T0)

T0 = reactant temperature

T1 = product temperature

ν = frequency factor (parameter)

Ta = activation temperature (parameter)

• In our case, these are Hugoniot temperatures

• There’s a problem when reaction lowers temperature

• Because T0 = T0(up), we’ll consider tad(up)

R. Menikoff, LA-UR-17-31024 (2017)
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Rate Model Calibration: Practice
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• Using 1/(adiabatic
induction time) as proxy
for rate

• For a given pair of EOS:
– Ta sets up range
– ν shifts laterally
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Simulated Wave Profiles in Polysulfone
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• Pinput=22.1 GPa; transition starts ∼18.5 GPa

• Qualitative features good, but experimental reaction signatures (P1
decay, P2 rise) much more subtle


